
IOT FINAL QUESTION PAPER

Q1. Illustrate the IoT conceptual framework

Ans=>The IoT (Internet of Things) conceptual framework is composed of several key components
that work together to enable smart systems and devices to communicate and exchange data over the
internet.

1 Devices/Things: These are physical objects embedded with sensors, actuators, or other
components that can collect data or perform acƟons. Examples include smart thermostats, wearable
devices, and connected vehicles.

2. ConnecƟvity: The devices communicate over various network protocols (e.g., Wi-Fi, Bluetooth,
Zigbee, 5G) to transmit data to other devices or a central system.

3. Edge CompuƟng: In some cases, processing of data can happen closer to the device at the edge of
the network, reducing latency and bandwidth usage by performing preliminary data analysis locally.

4. Data Processing: This layer involves cloud plaƞorms or data centers where the collected data is
analyzed, processed, and stored for further use.

5. ApplicaƟon Layer: This layer encompasses the applicaƟons that uƟlize the processed data to
deliver insights, automaƟon, or control to the user. Examples include smart home systems,
healthcare monitoring, or industrial automaƟon.

6. User Interface: Users interact with IoT syst ems through apps, dashboards, or voice
commands to monitor, control, and receive noƟficaƟons about the connected devices.

Q2. Discuss the LINUX significance in IoT deployment.

Ans=>1 Open-source and Cost-effecƟve: Linux is open-source, which means it is free to use and
modify. This makes it an affordable choice for IoT devices, which oŌen have cost constraints.

2 Flexibility and CustomizaƟon: Linux can be tailored to specific IoT device requirements, allowing
developers to create lightweight, opƟmized systems that fit the performance and memory
constraints of IoT devices.

3 Wide Support and Community: Linux has a large, acƟve community, which provides a wealth of
tools, libraries, and support. This makes it easier to develop, deploy, and troubleshoot IoT soluƟons.

4 Security: Linux offers robust security features, including user permissions and access controls,
which are essenƟal for protecƟng sensiƟve data in IoT systems.

5 Scalability: Linux supports a wide range of hardware plaƞorms, from low-power microcontrollers to
high-performance servers, making it scalable for diverse IoT applicaƟons.

Q3. Write a program using python for reading data from a sensor (simulated as a random number
generator) and sending it to an IoT plaƞorm (simulated as prinƟng the data).

Ans=>

import random

import Ɵme

def read_sensor_data():

 return random.uniform(20.0, 30.0)

def send_to_iot_plaƞorm(data):

 print(f"Sending data to IoT plaƞorm: {data}°C")

while True:

 sensor_data = read_sensor_data() # Read sensor data

 send_to_iot_plaƞorm(sensor_data) # Send the data

 Ɵme.sleep(2) # Wait for 2 seconds before reading the data again

Q4. Write Difference b/w Ardiuno/ Raspberry Pi. Or explain or

Explain the concepts involved in Raspberry Pi. Discuss in detail about Arduino with

neat sketch.

Ans=>

Feature Arduino Raspberry Pi
DefiniƟon Arduino is an open-source

electronics plaƞorm based on
simple soŌware and hardware
for building interacƟve
projects.

Raspberry Pi is a small,
affordable computer used for
various applicaƟons like
coding, learning, and DIY
projects.

Type Microcontroller-based
plaƞorm.

Single-board computer (SBC).

Processing Power Low processing power, usually
8-bit or 16-bit microcontroller.

High processing power with
ARM-based CPU (e.g., 64-bit).

OperaƟng System Does not use an operaƟng
system; it runs a simple
program directly.

Runs a full operaƟng system
(e.g., Raspberry Pi OS).

Programming Language Primarily C/C++ using Arduino
IDE.

Can be programmed in various
languages like Python, C++,
Java.

Input/Output Pins Has a limited number of digital
and analog pins for interfacing
with sensors and actuators.

Has more I/O opƟons, but no
direct analog pins (use GPIO
pins with added components).

ConnecƟvity Limited connecƟvity opƟons
(USB, serial, I2C, SPI).

Full networking capabiliƟes
with Ethernet, Wi-Fi,
Bluetooth, USB ports, HDMI.

Power Requirements Low power consumpƟon,
typically powered via USB or
baƩeries.

Higher power consumpƟon,
usually requires a 5V power
supply or micro-USB.

Q5. List the properƟes of constrained environments. Use examples of connected devices, such as
streetlights, RFIDs, and ATMs with the Internet.

Ans=>Constrained environments are characterized by devices with limited resources, such as low
processing power, limited memory, and energy constraints.

1. Limited Processing Power

 Devices in constrained environments oŌen use low-power processors designed for specific
tasks.

 Example:

o Streetlights: Smart streetlights may use microcontrollers with minimal compuƟng
power to process light sensor data and control lighƟng intensity.

o RFIDs: Operate on Ɵny chips with minimal processing power to manage
idenƟficaƟon data.

o ATMs: Use specialized processors opƟmized for secure transacƟons rather than
general compuƟng.

2. Low Energy Availability

 Constrained devices oŌen run on baƩeries or low-power sources, necessitaƟng energy-
efficient operaƟon.

 Example:

o Streetlights: Solar-powered units store limited energy, requiring efficient use for
sensors and communicaƟon.

o RFIDs: Passive RFIDs draw energy from nearby RFID readers to operate, limiƟng their
funcƟonality.

o ATMs: Must maintain operaƟon during power outages using backup power systems,
limiƟng non-essenƟal processes.

3. Limited Memory

 Constrained devices have limited RAM and storage capacity, focusing only on essenƟal data
processing and storage.

 Example:

o Streetlights: Only store operaƟonal seƫngs and minimal sensor data.

o RFIDs: Store unique idenƟficaƟon data and perhaps a small amount of metadata.

o ATMs: Retain transacƟonal logs and operaƟonal firmware but not extensive
databases.

4. Cost SensiƟvity

 Devices in constrained environments are designed to be cost-effecƟve for mass deployment.

 Example:

o Streetlights: Use low-cost sensors and controllers for widespread installaƟon.

o RFIDs: Are manufactured at a low cost for scalability in supply chains.

o ATMs: Use opƟmized hardware to manage costs while ensuring reliability.

Q6. Explain about the privacy and vulnerabiliƟes of IoT. What are the security requirements and
threat analysis in IoT?

Ans=>Privacy and VulnerabiliƟes in IoT:

The Internet of Things (IoT) connects devices like smart appliances, sensors, and cameras to the
internet. These devices oŌen collect sensiƟve data, like personal details, health records, or locaƟon,
which can lead to privacy issues if the data is not properly secured. Common vulnerabiliƟes include
weak passwords, unencrypted data, and insecure networks, which make IoT devices easy targets for
hackers.

Security Requirements in IoT:

1. Data EncrypƟon: Protect data during transmission and storage.

2. AuthenƟcaƟon: Ensure only authorized users can access devices.

3. Regular Updates: Patch security flaws in IoT devices.

4. Secure Network CommunicaƟon: Use strong protocols like HTTPS.

Threat Analysis in IoT:

IoT faces threats like:

1. Hacking: Unauthorized access to devices.

2. Data Breaches: Leaking sensiƟve data.

3. Botnets: Compromised IoT devices used in cyberaƩacks.

4. Denial of Service (DoS): Overloading devices to disrupt their funcƟons.

Q7. Analyse in detail the architectural components of IOT and M2M architecture.

Ans=>M2M architecture focuses on direct communicaƟon between devices without significant
human intervenƟon. It typically involves the following components:

 Devices:

 Sensors: These devices collect data from the physical world, such as temperature, humidity,
pressure, or moƟon

ConnecƟvity:

 Networks: M2M devices oŌen use various network technologies, including cellular networks
(2G, 3G, 4G, 5G), Wi-Fi, Bluetooth, Zigbee, and LoRaWAN , and transmit it to a central system
or cloud plaƞorm.

 Data Processing:

 Data CollecƟon: Data is gathered from devices and transmiƩed to a central server or cloud
plaƞorm. Collected data is stored for analysis and future reference. Data is processed to
extract meaningful insights and trigger acƟons.

Cloud Servers:

The cloud is oŌen used to store and analyze large volumes of data collected by IoT devices. It
can also host applicaƟons and services that offer higher-level analysis, such as machine
learning, big data processing, and real-Ɵme data streaming

ApplicaƟons:

M2M applicaƟons are designed to automate tasks and improve efficiency, such as remote
monitoring, predicƟve maintenance, and supply chain opƟmizaƟon.

IoT Architecture or List the major components of an IoT system. How do these components
work

together Lo achieve the goals of IOT?

A typical IoT architecture consists of the following components:

1. Devices:

o Sensors and Actuators: Similar to M2M, IoT devices include sensors and actuators to
collect and control data.

2. ConnecƟvity:

o Networks: IoT devices uƟlize a wide range of network technologies, including cellular
networks, Wi-Fi, Bluetooth, Zigbee, LoRaWAN, and satellite communicaƟon.
Gateways aggregate data from mulƟple devices and transmit it to the cloud or other
network systems.

3. Data Processing:

o Data CollecƟon: Data is collected from devices and transmiƩed to a cloud plaƞorm
or data center. Data is stored in various formats, such as Ɵme-series databases,
NoSQL databases, or data lakes.Data is processed using advanced analyƟcs
techniques, including machine learning and arƟficial intelligence, to extract valuable
insights.

4. Cloud Servers:
o The cloud is oŌen used to store and analyze large volumes of data collected by IoT

devices. It can also host applicaƟons and services that offer higher-level analysis,
such as machine learning, big data processing, and real-Ɵme data streaming.

5. ApplicaƟons and Services:

o IoT applicaƟons are diverse and cover a wide range of domains, including smart
homes, smart ciƟes, healthcare, agriculture, and manufacturing.

o User Interfaces: User interfaces enable users to interact with IoT devices and
applicaƟons, such as mobile apps, web portals, and voice assistants.

NewPaper

Q1. Name the Need For sensors in IoT.

Ans=> 1 Real-world data acquisiƟon: Sensors capture data from the physical environment, enabling
IoT systems to react to changes in real-Ɵme.

2 Remote monitoring and control: Sensors allow remote monitoring of various parameters, enabling
remote control and decision-making.

3 AutomaƟon and efficiency: Sensors can trigger automated acƟons based on predefined condiƟons,
improving efficiency and reducing human intervenƟon.

4 Data-driven insights: Sensor data can be analyzed to extract valuable insights and opƟmize
processes.

5 Enhanced user experience: Sensors can personalize user experiences by adapƟng to their
preferences and surroundings.

Q2. Describe Logical design using python in detail

Ans=> In the context of the Internet of Things (IoT), logical design refers to the structure and
organizaƟon of data flow, device interacƟons, and system processes that enable communicaƟon,
control, and data processing in an IoT system. The logical design primarily focuses on defining the
architecture of the system, which consists of various IoT devices, sensors, actuators, and cloud
services.

1.Sensor Data CollecƟon: IoT devices collect data from sensors (e.g., temperature, humidity, moƟon
sensors). Python can be used to interact with these sensors via libraries like RPi.GPIO for Raspberry Pi
or pySerial for Arduino to gather real-Ɵme data.

2.Data Transmission: The collected data is transmiƩed to a central server or cloud plaƞorm. This can
be done using protocols like MQTT, HTTP, or CoAP. Python's paho-mqƩ library, for example, can be
used to send data over MQTT.

3.Data Processing: On the server/cloud side, Python can process and analyze the collected data. For
instance, the data could be stored in a database like MySQL, MongoDB, or sent for analysis using
libraries like Pandas or NumPy.

4.Device Control: Based on the processed data, Python can also be used to send commands to
actuators (e.g., turning on a fan or light). This is achieved through communicaƟon protocols like
MQTT, HTTP, or direct GPIO control on devices.

Q3. Explain the deployment and operaƟonal view, resources, services, virtual enƟƟes, users in an
IoT system by considering a Parking lot example.

In an IoT system for a parking lot, here's a breakdown of the key elements:

1. Deployment and OperaƟonal View: This represents how the IoT devices (like sensors,
cameras, and gateways) are physically placed in the parking lot and how they interact to
collect, process, and transmit data. For example, sensors are deployed in each parking spot
to detect whether it's occupied or free.

2. Resources: These are the physical or virtual components required for the IoT system, such as
parking sensors, cameras, edge devices, cloud storage, and servers. Resources also include
network infrastructure for communicaƟon.

3. Services: These are the funcƟonaliƟes provided by the IoT system, like real-Ɵme parking
space availability, automated payment systems, and noƟficaƟons for users. They are
delivered through soŌware or cloud plaƞorms.

4. Virtual EnƟƟes: These are digital representaƟons of physical components in the IoT system.
For instance, each parking spot can be a virtual enƟty, which gets updated in real-Ɵme based
on sensor data (whether the spot is occupied or free).

5. Users: These are the people or systems interacƟng with the IoT system. In the parking lot
example, users could include drivers searching for available parking spots, parking lot
operators managing the lot, or even maintenance teams monitoring system health.

Q4.

a) Define clustering. Summarize the funcƟon of AcƟon PredicƟon model. IdenƟfy the

purpose of Data Preprocessing.

b) When the data is called as Week Type Data? What is meant by predicƟve analysis?

List out the various phases of CRISP-DM model and explain each with diagram.

Ans=>

1.Clustering is the process of grouping a set of objects in such a way that objects in the same group
(or cluster) are more similar to each other than to those in other groups. It is oŌen used in data
analysis to idenƟfy paƩerns and relaƟonships within data.

2.The AcƟon PredicƟon model is designed to predict future acƟons or behaviors based on historical
data. It uƟlizes various algorithms and techniques to analyze past events and make informed
predicƟons about what might happen next. This model is commonly applied in fields such as
markeƟng, finance, and user behavior analysis to enhance decision-making processes.

Data Preprocessing serves several criƟcal purposes in the context of machine learning and data
analysis:

 Data Cleaning: It involves idenƟfying and correcƟng errors or inconsistencies in the dataset,
such as handling missing values, removing duplicates, and addressing outliers.

 Data TransformaƟon: This includes scaling features, encoding categorical variables, and
normalizing data to ensure that all features contribute equally to the analysis.

 Improving Model Performance: Proper preprocessing enhances the quality of the data,
which directly impacts the performance and accuracy of machine learning models.

 FacilitaƟng Analysis: By transforming raw data into a more suitable format, preprocessing
makes it easier to extract meaningful insights and paƩerns from the data.

 Ensuring Consistency: It helps maintain a consistent format across the dataset, which is
essenƟal for effecƟve analysis and model training.

B) Ans=>Week Type Data typically refers to data that is categorized based on the type of week, such
as weekdays versus weekends, or specific weeks in a month or year. This classificaƟon can help in
analyzing paƩerns or trends that vary by week type.

PredicƟve Analysis: PredicƟve analysis is a branch of data analyƟcs that uses staƟsƟcal algorithms,
machine learning techniques, and historical data to make predicƟons about future events or trends.
The goal is to idenƟfy paƩerns in the data that can help predict outcomes.

For example:

 Sales ForecasƟng: PredicƟng future sales based on past sales data

 Customer Behavior: PredicƟng which products a customer may purchase based on past
behavior.

 Demand ForecasƟng: PredicƟng demand for products or services during certain periods,
such as holidays.

CRISP-DM stands for the cross-industry standard process for data mining. The CRISP-DM
methodology provides a structured approach to planning a data mining project. It is a robust and
well-proven methodology. We do not claim any ownership over it.

various phases of CRISP-DM model

It includes descripƟons of typical phases of a project, the tasks involved with each phase, and an
explanaƟon of the relaƟonships between these tasks.

Phase 1: Business Understanding:

 This is the first phase where you define the objecƟves of the project. You must understand
the problem you're trying to solve and translate it into a data mining problem. You also
decide on the success criteria.

Example: In a retail company, the goal could be to predict customer churn (who will stop buying).

Phase 2: Data Understanding:

 This phase involves collecƟng and exploring data to get familiar with it. It includes
understanding the dataset, idenƟfying missing values, and detecƟng outliers.

Example: Collect data about customers, their purchases, and demographics.

Phase 3: Data PreparaƟon:

 In this phase, you clean and prepare the data for analysis. This may involve dealing with
missing data, removing duplicates, or transforming data into the required format.

Example: You might remove rows with missing customer age or format the data to work with
machine learning models.

Phase 4: Modeling:

 Here, you apply different data mining techniques (such as classificaƟon, regression, or
clustering) to build models based on the prepared data.

Example: You could use a decision tree algorithm to predict whether a customer will churn.

Phase 5: EvaluaƟon:

 AŌer building the model, you assess its performance and check if it meets the original
business objecƟves. If not, you might need to adjust the model.

Example: You check if your model's accuracy is good enough to be used for real-world predicƟons.

Phase 6: Deployment:

 In this final phase, the model is deployed into producƟon, where it can be used to make
decisions or predicƟons. It could also involve creaƟng reports or visualizaƟons for the
business.

Example: The churn predicƟon model is integrated into the company's system to noƟfy when a
customer is at risk of leaving.

Newpaper

Q1. Compare and contrast Machine-to-Machine (M2M) communicaƟon with IoT.

Ans=>

DefiniƟon
Direct communicaƟon between machines or
devices without human intervenƟon.

A network of interconnected devices
that communicate over the internet.

ConnecƟvity
Typically relies on point-to-point
communicaƟon, oŌen via cellular or wired
networks.

Uses IP-based networks, including
Wi-Fi, cellular, Bluetooth, and
Ethernet.

Scope Limited to specific devices or applicaƟons.
Broader scope, integraƟng diverse
devices and applicaƟons.

Data Handling
Limited data storage and processing, oŌen
localized.

Extensive data collecƟon, storage,
and cloud-based processing.

Scalability
Less scalable due to reliance on fixed
infrastructure.

Highly scalable, supporƟng millions
of devices globally.

Cost
Higher setup and maintenance costs for
specific use cases.

Cost-efficient due to shared
infrastructure and cloud services.

Cloud
IntegraƟon

Rarely integrated with cloud services.
Heavily relies on cloud plaƞorms for
data storage and analyƟcs.

ApplicaƟon
Example

Smart meters, ATM communicaƟon,
industrial equipment monitoring.

Smart homes, wearable devices,
autonomous vehicles, smart ciƟes.

Human
InteracƟon

Generally requires no human interacƟon.
Can involve humans for monitoring,
control, and decision-making.

Q2. Provide three real-world examples of IoT applicaƟons in different sectors. Or Present examples
of how IoT is transforming various industries.

Ans=> 1. Healthcare Sector: IoT devices such as wearable health monitors (e.g., Fitbit, Apple Watch,
or specialized medical devices) track vital signs like heart rate, blood pressure, and oxygen levels in
real-Ɵme. Data is transmiƩed to healthcare providers for early diagnosis, chronic disease
management, or emergency alerts, enhancing paƟent care while reducing hospital visits.

2. Agriculture Sector: IoT sensors monitor soil moisture, weather condiƟons, and crop health. Based
on the collected data, these systems automate irrigaƟon, ensuring crops receive opƟmal water levels.
This reduces water waste and boosts crop yields, helping farmers maximize efficiency and
sustainability.

3. TransportaƟon Sector: IoT-enabled traffic lights and sensors collect real-Ɵme traffic data to
opƟmize signal Ɵmings, reduce congesƟon, and provide alternate route suggesƟons. Connected
vehicles also communicate with these systems for improved navigaƟon and safety, leading to more
efficient urban mobility.

4. Environmental Monitoring Sector: IoT sensors deployed in urban areas measure pollutants like
CO2, PM2.5, and ozone. Real-Ɵme data helps governments and organizaƟons develop strategies to
combat air polluƟon and improve public health.

5. LogisƟcs and Supply Chain Sector:
IoT-enabled GPS devices and sensors track vehicle locaƟons, fuel consumpƟon, and driver behavior.
This ensures Ɵmely deliveries, reduces fuel costs, and enhances overall fleet efficiency.

Q3. Set up an IOT device (e.g., Raspberry Pi with sensors).

Ans=> Components Needed

1. Raspberry Pi (any model, but Raspberry Pi 3 or 4 is recommended)

2. MicroSD Card (at least 16GB, Class 10 recommended)

3. Power Supply (appropriate for your Raspberry Pi model)

4. Sensors (e.g., DHT11/DHT22 for temperature and humidity, HC-SR04 for distance
measurement, etc.)

5. Breadboard and Jumper Wires (for prototyping)

6. Internet ConnecƟon (Wi-Fi or Ethernet)

7. OpƟonal: Case for Raspberry Pi

Step 1: Set Up the Raspberry Pi

1. Download Raspberry Pi OS:

 Go to the Raspberry Pi website and download the Raspberry Pi Imager.

 Use the Imager to write the Raspberry Pi OS onto the microSD card.

2. Insert the MicroSD Card:

 Once the OS is installed, insert the microSD card into your Raspberry Pi.

3. Connect Peripherals:

 Connect a keyboard, mouse, and monitor to the Raspberry Pi.

4. Power Up:

 Connect the power supply to the Raspberry Pi and turn it on.

5. IniƟal ConfiguraƟon:

 Follow the on-screen instrucƟons to set up the Raspberry Pi (language, Ɵmezone,
Wi-Fi, etc.).

 Update the system using:

sudo apt update

sudo apt upgrade

Step 2: Connect Your Sensors

1. Wiring:

 Connect your sensors to the Raspberry Pi GPIO pins using jumper wires. Refer to the
datasheet for each sensor for the correct pin configuraƟon.

 Here’s an example for the DHT11 sensor:

 VCC to 3.3V

 GND to Ground

 Data pin to a GPIO pin (e.g., GPIO4)

2. Breadboard Setup:

 Use a breadboard for easier connecƟons if needed.

Step 3: Install Required Libraries

1. Install Python and Pip (if not already installed):

sudo apt install python3 python3-pip

2. Install Sensor Libraries:

 For DHT sensors, you can install the Adafruit DHT library:

sudo pip3 install Adafruit-DHT

3. Install GPIO Library:

sudo apt install python3-rpi.gpio

Step 4: Write the Code

1. Create a Python Script:

 Open a terminal and create a new Python file:

nano sensor_read.py

2. Write the Code:

 Here is a simple example for reading temperature and humidity from a DHT11
sensor:

import Adafruit_DHT

import Ɵme

sensor = Adafruit_DHT.DHT11

pin = 4 # GPIO pin number

while True:

 humidity, temperature = Adafruit_DHT.read_retry(sensor, pin)

 # Check if the reading was successful

 if humidity is not None and temperature is not None:

 print(f'Temperature: {temperature}°C Humidity: {humidity}%')

 else:

 print('Failed to retrieve data from sensor')

 Ɵme.sleep(2)

3. Save and Exit:

 Press CTRL + X, then Y, then Enter to save and exit.

Step 5: Run Your Code

1. Run the Script:

python3 sensor_read.py

2. Monitor Output:

 You should see temperature and humidity readings in the terminal.

Q4. Develop a use and misuse case scenario for a smart home IoT system.

Ans=> Use Case Scenario: Smart Home IoT System

A use case highlights a beneficial and intended interacƟon with the system.

Scenario:

A homeowner uses their smart home IoT system to control home appliances remotely via a mobile
app. They turn on the air condiƟoner 30 minutes before arriving home to ensure the house is cool
and comfortable. The system also uses moƟon sensors to detect if anyone is in a room and
automaƟcally adjusts the lighƟng and temperature, reducing energy consumpƟon.

Misuse Case Scenario: Smart Home IoT System

A misuse case illustrates how the system can be exploited or used inappropriately.

Scenario:

An unauthorized person hacks into the IoT system due to weak password protecƟon. They gain
access to control the security cameras and locks, enabling a burglary while the homeowner is away.

Q5. Give two examples of smart devices and explain how they connect to and interact within the
IoT network

Ans=>

1. Smart Apple Watch

 ConnecƟon to IoT Network: The Smart Apple Watch connects to the Internet via Wi-Fi or
cellular networks, and it syncs with other Apple devices (iPhone, iPad, Mac) through
Bluetooth. The watch can also connect to third-party applicaƟons via APIs, sharing data such
as health metrics, locaƟon, and noƟficaƟons.

 InteracƟon within the IoT Network: The Apple Watch interacts with other IoT devices like
smart home appliances (e.g., controlling lights, thermostats), fitness trackers, or even health
monitoring systems. It can send data such as heart rate, steps, and sleep paƩerns to cloud-
based applicaƟons, which can then analyze and provide insights. It also receives
noƟficaƟons, calls, and messages, allowing users to interact with the watch seamlessly.

2. Smart Umbrella

 ConnecƟon to IoT Network: A Smart Umbrella connects to the IoT network via Bluetooth or
Wi-Fi to a user's smartphone. It may include sensors like GPS, temperature, or humidity
sensors to detect weather condiƟons.

 InteracƟon within the IoT Network: The umbrella interacts with weather apps or smart
home systems to noƟfy the user when it's about to rain. It may sync with a smartphone app
that tracks its locaƟon and sends alerts if the umbrella is leŌ behind. AddiƟonally, some
smart umbrellas can update weather data to cloud services, helping users plan their day
based on real-Ɵme weather forecasts.

Newpaper

Q1. what is vulnerabiliƟes List common vulnerabiliƟes associated with IoT devices.

Ans=>IoT (Internet of Things) devices are oŌen vulnerable to various security threats due to their
interconnected nature, lack of robust security protocols, and diverse use cases. Here is a list of
common vulnerabiliƟes associated with IoT devices:

1. Weak AuthenƟcaƟon and AuthorizaƟon

 Many IoT devices use weak or hardcoded default passwords, making it easier for aƩackers to
gain unauthorized access.

2. Insecure CommunicaƟon

 IoT devices may transmit data over unencrypted communicaƟon channels, exposing sensiƟve
informaƟon to eavesdropping or man-in-the-middle aƩacks.

3. Lack of Regular SoŌware Updates

 Many IoT devices have limited or no mechanism to receive regular security patches and
soŌware updates, making them suscepƟble to known vulnerabiliƟes.

4. Insecure Web Interfaces

 Some IoT devices have poorly designed web interfaces that are vulnerable to aƩacks like
cross-site scripƟng (XSS), cross-site request forgery (CSRF), and SQL injecƟon, allowing
aƩackers to execute malicious code.

6. Lack of Privacy ProtecƟons

 Many IoT devices collect personal data but do not implement strong privacy protecƟons or
clear data usage policies, exposing users to potenƟal privacy breaches.

7. Insecure APIs

 APIs used by IoT devices may lack proper authenƟcaƟon and security controls, making it
easier for aƩackers to exploit vulnerabiliƟes and gain unauthorized access to the device or its
data.

Q2. Compare and contrast wired and wireless communicaƟon technologies in the context of
IoT/M2M Systems.

Feature Wired CommunicaƟon Wireless CommunicaƟon

ConnecƟon Type
Physical cables (Ethernet, coaxial
cables, fiber opƟc)

Radio waves (Wi-Fi, Bluetooth, Zigbee, LoRa,
cellular, etc.)

Setup and
Deployment

Requires physical installaƟon and
infrastructure

Easier deployment, no need for physical
connecƟons

Mobility
StaƟc, not suitable for mobile
devices

Highly flexible and supports mobile devices

Speed and
Bandwidth

High-speed data transfer (Fiber
OpƟc, Ethernet)

Varies; Wi-Fi offers high speed, while other
wireless opƟons may offer lower speed

Feature Wired CommunicaƟon Wireless CommunicaƟon

Reliability
More reliable and stable (less
interference, physical connecƟon)

Prone to interference, signal degradaƟon, and
range limitaƟons

Power
ConsumpƟon

Generally lower power
consumpƟon as devices are
connected via cable

Wireless devices can consume more power,
especially for long-range communicaƟon

Cost
Higher iniƟal cost due to physical
infrastructure

Lower iniƟal cost for deployment but may
have ongoing subscripƟon or data costs

Security
Generally more secure due to
physical connecƟon

Security can be a concern due to potenƟal
vulnerabiliƟes in wireless networks

Maintenance
Requires manual maintenance for
cables and physical hardware

Easier to maintain; requires less physical
intervenƟon but may need soŌware or
network management

Range
Limited by cable length (e.g.,
Ethernet, fiber opƟc)

Varies based on the technology (Wi-Fi,
Bluetooth have limited range, while LoRa can
have longer range)

Scalability
Difficult to scale due to the need
for addiƟonal cables and hardware

More scalable as addiƟonal devices can be
added without the need for extensive cabling

Flexibility
Limited flexibility; requires re-
wiring for changes in layout

Highly flexible; devices can be moved without
the need to reconfigure infrastructure

Q3. In what scenarios would you prefer one over the other for web connecƟvity? JSON vs. Tag
Length Value (TLV)

Ans=>Prefer JSON when:

 Web APIs: JSON is a standard for data exchange over the web due to its human-readable
format and ease of integraƟon with web technologies.

Prefer TLV when:

 Performance-sensiƟve applicaƟons: You need a more compact, efficient format, especially in
low-level communicaƟon protocols (e.g., embedded systems, smart cards).

In conclusion, JSON is typically preferred for web connecƟvity and APIs due to its human-readable
format, ease of use, and wide support. However, TLV is a beƩer choice in systems that require
compact, efficient, and binary data transmission, especially in low-level protocols or hardware-
related applicaƟons.

Q4. Name two common applicaƟon layer protocols used on the internet. Explain the role of the
Hypertext Transfer Protocol (HTTP) in the applicaƟon layer.

Ans=>Two common applicaƟon layer protocols used on the internet are:

1. Hypertext Transfer Protocol (HTTP): HTTP is the primary protocol used for transferring web
pages and other resources on the World Wide Web. It defines the communicaƟon rules
between a client (e.g., web browser) and a server. HTTP facilitates the request and response
mechanism, allowing users to access websites, fetch data, and interact with online content.

2. File Transfer Protocol (FTP): FTP is used to transfer files between a client and a server. It
enables users to upload and download files over the internet. FTP is oŌen used for managing
files on remote servers, sharing large files, and accessing directories.

Role of HTTP in the ApplicaƟon Layer:

The Hypertext Transfer Protocol (HTTP) operates at the applicaƟon layer in the OSI model, and its
role is to enable communicaƟon between web browsers (clients) and web servers. HTTP governs
how requests are made for web resources and how servers respond with those resources. It defines
a client-server communicaƟon model where clients request web pages and servers provide the
requested content. HTTP is stateless, meaning each request is independent, and no informaƟon
about previous requests is retained. It uses methods like GET, POST, PUT, and DELETE to define
acƟons to be performed on resources. Overall, HTTP is the fundamental protocol that supports the
operaƟon of the web by enabling the transfer of hypertext and mulƟmedia content across the
internet.

Q5. Share a brief summary of one real-world case study where IoT technology has been

applied in Smart Homes.

Ans=>A real-world case study where IoT technology has been applied in smart homes is the use of
Google Nest. Google Nest is a smart home system that integrates various IoT devices to enhance
convenience, security, and energy efficiency in homes.

Summary:

Google Nest includes devices like smart thermostats, cameras, doorbells, and smoke detectors, all
connected to the internet. The Nest Thermostat allows homeowners to remotely control the
temperature of their home via a mobile app or voice commands, opƟmizing energy consumpƟon by
learning the user’s preferences and adjusƟng the heaƟng/cooling accordingly. The Nest Cam and
Nest Hello doorbell use IoT sensors to monitor the home for security threats, sending real-Ɵme
alerts to users' smartphones if moƟon or unusual acƟvity is detected. AddiƟonally, the Nest Protect
smoke detector provides early warnings and can be silenced remotely through the app.

Q6. List the different libraries used in Python. Write the following to create a code on

Arduino/Raspberry Pi:

a) To turn ON/OFF LED for specific duraƟon(LED/ Buzzer).

b) To print temperature and humidity readings (DHTII/ DHT22 sensor).

Ans=>Common Python Libraries

1. NumPy: For numerical operaƟons and array handling.

2. Pandas: For data manipulaƟon and analysis.

3. Matplotlib: For ploƫng and visualizaƟon.

4. Requests: For making HTTP requests.

5. Flask: For web development.

6. TensorFlow/PyTorch: For machine learning.

7. OpenCV: For computer vision.

8. DHT: For interfacing with DHT sensors.

9. RPi.GPIO: For controlling GPIO pins on Raspberry Pi.

10. pySerial: For serial communicaƟon.

a) Code to Turn ON/OFF LED for Specific DuraƟon (Arduino):

b) Code to Print Temperature and Humidity Readings (DHT11/DHT22 Sensor):

